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1 The curveC has equationy = 1
4(e2x + e−2x). Show that the length of the arc ofC from the point where

x = 0 to the point wherex = 1
2 is

e2 − 1
4e

. [4]

2 Use the method of differences to findSN , where

SN =
N

∑
n=1

1
n(n + 2) . [4]

Deduce the value of lim
N→∞ SN. [1]

3 A finite regionR in the x-y plane is bounded by the curve with equationy = √
x − 1√

x
, the x-axis

betweenx = 1 andx = 4, and the linex = 4. Find the exact value of they-coordinate of the centroid
of R. [5]

4 Prove by mathematical induction that, for all non-negative integersn, 72n+1 + 5n+3 is divisible by 44.
[5]

5 Let In = ã 1

0
(1− x)n sinx dx for n ≥ 0. Show that

In+2 = 1− (n + 1)(n + 2)In. [4]

Hence find the value ofI6, correct to 4 decimal places. [4]

6 The linear transformation T :>4 → >4 is represented by the matrixA, where

A =


1 2 −1 α

2 3 −1 0
2 1 2 −2
0 1 −3 −2

 .

Given that the dimension of the range space of T is 4, show thatα ≠ 1. [3]

It is now given thatα = 1. Show that the vectors


1
2
2
0

 ,


2
3
1
1

 and

−1
−1

2
−3


form a basis for the range space of T. [2]

Given also that the vector


p
1
1
q

 is in the range space of T, find a condition satisfied byp andq. [3]
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7 The roots of the equationx3 + 4x − 1 = 0 areα, β andγ . Use the substitutiony = 1
1+ x

to show that

the equation 6y3 − 7y2 + 3y − 1 = 0 has roots
1

α + 1
,

1
β + 1

and
1

γ + 1
. [2]

For the casesn = 1 andn = 2, find the value of

1
(α + 1)n + 1

(β + 1)n + 1
(γ + 1)n . [2]

Deduce the value of
1

(α + 1)3
+ 1

(β + 1)3
+ 1

(γ + 1)3
. [2]

Hence show that
(β + 1)(γ + 1)

(α + 1)2
+ (γ + 1)(α + 1)

(β + 1)2
+ (α + 1)(β + 1)

(γ + 1)2
= 73

36
. [3]

8 The curvesC1 andC2 have polar equations given by

C1 : r = 3 sinθ, 0≤ θ < π,

C2 : r = 1+ sinθ, −π < θ ≤ π.

(i) Find the polar coordinates of the points, other than the pole, whereC1 andC2 meet. [2]

(ii) In a single diagram, draw sketch graphs ofC1 andC2. [3]

(iii) Show that the area of the region which is insideC1 but outsideC2 is π. [5]

9 Find the eigenvalues and corresponding eigenvectors of the matrix

A =  3 −1 0
−1 2 −1

0 −1 3

 . [7]

Find a non-singular matrixM and a diagonal matrixD such that(A − 2I)3 = MDM−1, whereI is the
3× 3 identity matrix. [3]

10 By using de Moivre’s theorem to express sin 5θ and cos 5θ in terms of sinθ and cosθ, show that

tan 5θ = 5t − 10t3 + t5

1− 10t2 + 5t4
,

wheret = tanθ. [5]

Show that the roots of the equationx4 − 10x2 + 5 = 0 are tan(1
5nπ) for n = 1, 2, 3, 4. [2]

By considering the product of the roots of this equation, find the exact value of tan(1
5π) tan(2

5π). [3]
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11 It is given thatx ≠ 0 and

x
d2y

dx2
+ 2

dy
dx

+ 4xy = 8x2 + 16.

Show that ifß = xy then

d2ß
dx2

+ 4ß = 8x2 + 16. [3]

Find y in terms ofx, given thaty = 0 and
dy
dx

= −2 whenx = 1
2π. [9]

12 Answer onlyone of the following two alternatives.

EITHER

The curveC has equation

y = x2 + 2λx

x2 − 2x + λ
,

whereλ is a constant andλ ≠ −1.

(i) Show thatC has at most two stationary points. [3]

(ii) Show that ifC hasexactly two stationary points thenλ > −5
4. [2]

(iii) Find the set of values ofλ such thatC has two vertical asymptotes. [2]

(iv) Find thex-coordinates of the points of intersection ofC with

(a) thex-axis,

(b) the horizontal asymptote.
[3]

(v) SketchC in each of the cases

(a) λ < −2,

(b) λ > 2.
[4]

OR

The planeΠ1 has equationr = 2i+ j + 4k+ λ(2i+ 3j+ 4k) + µ(−i + k). Obtain a cartesian equation
of Π1 in the formpx + qy + rß = d. [4]

The planeΠ2 has equationr.(i − 4j+ 5k) = 12. Find a vector equation of the line of intersection of
Π1 andΠ2. [3]

The line l passes through the pointA with position vectorai + (2a + 1)j − 3k and is parallel to
3ci − 3j+ ck, wherea andc are positive constants. Given that the perpendicular distance fromA to

Π1 is
15√

6
and that the acute angle betweenl andΠ1 is sin−1( 2√

6
), find the values ofa andc. [7]
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